-
1 code assignment
закрепление кодов ( за абонентами); распределение кодов ( между абонентами); см. bit-homogeneous code assignment; bit-nonhomogeneous code assignment; preamble code assignment; receiver-directed bit-homogeneous code assignment; receiver-directed preamble code assignment; space-and-bit-homogeneous code assignment; space-homogeneous preamble code assignment; transmitter-directed code assignment; uniform code assignmentАнгло-русский словарь промышленной и научной лексики > code assignment
-
2 transmitter-based code
код, закрепляемый за передатчиком; см. network-wide codeАнгло-русский словарь промышленной и научной лексики > transmitter-based code
-
3 transmitter-directed code assignment
Англо-русский словарь промышленной и научной лексики > transmitter-directed code assignment
-
4 transmitter start code
Information technology: TSCУниверсальный русско-английский словарь > transmitter start code
-
5 transmitter-start code
Англо-русский словарь промышленной и научной лексики > transmitter-start code
-
6 network-wide code
общий сетевой код (единый код, используемый в ПРС, напр., для расширения спектра сигналов); см. также transmitter-based codeАнгло-русский словарь промышленной и научной лексики > network-wide code
-
7 Universal Code Synchronous Transmitter Receiver
File extension: UCSTRУниверсальный русско-английский словарь > Universal Code Synchronous Transmitter Receiver
-
8 кодовый передатчик
Russian-English dictionary of telecommunications > кодовый передатчик
-
9 кодовый датчик
Russian-English dictionary of railway terminology > кодовый датчик
-
10 кодовый передатчик
Русско-английский политехнический словарь > кодовый передатчик
-
11 кодовый передатчик
Engineering: code transmitterУниверсальный русско-английский словарь > кодовый передатчик
-
12 кодовый трансмиттер
Railway term: code transmitterУниверсальный русско-английский словарь > кодовый трансмиттер
-
13 стартовый код трансмиттера
Русско-английский словарь по вычислительной технике и программированию > стартовый код трансмиттера
-
14 стартовый код трансмиттера
Русско-английский большой базовый словарь > стартовый код трансмиттера
-
15 стартовый код трансмиттера
1) Engineering: transmitter start code2) Information technology: transmitter-start code3) Astronautics: tsc4) Network technologies: transmitted-start codeУниверсальный русско-английский словарь > стартовый код трансмиттера
-
16 Baudot, Jean-Maurice-Emile
[br]b. 11 September 1845 Magneux, Franced. 28 March 1903 Sceaux, France[br]French engineer who developed the multiplexed telegraph and devised a 5-bit code for data communication and control.[br]Baudot had no formal education beyond his local primary school and began his working life as a farmer, as was his father. However, in September 1869 he joined the French telegraph service and was soon sent on a course on the recently developed Hughes printing telegraph. After service in the Franco-Prussian war as a lieutenant with the military telegraph, he returned to his civilian duties in Paris in 1872. He was there encouraged to develop (in his own time!) a multiple Hughes system for time-multiplexing of several telegraph messages. By using synchronized clockwork-driven rotating switches at the transmitter and receiver he was able to transmit five messages simultaneously; the system was officially adopted by the French Post \& Telegraph Administration five years later. In 1874 he patented the idea of a 5-bit (i.e. 32-permutation) code, with equal on and off intervals, for telegraph transmission of the Roman alphabet and punctuation signs and for control of the typewriter-like teleprinter used to display the message. This code, known as the Baudot code, was found to be more economical than the existing Morse code and was widely adopted for national and international telegraphy in the twentieth century. In the 1970s it was superseded by 7—and 8-bit codes.Further development of his ideas on multiplexing led in 1894 to methods suitable for high-speed telegraphy. To commemorate his contribution to efficient telegraphy, the unit of signalling speed (i.e. the number of elements transmitted per second) is known as the baud.[br]Bibliography17 June 1874, "Système de télégraphie rapide" (Baudot's first patent).Further Reading1965, From Semaphore to Satellite, Geneva: International Telecommunications Union.P.Lajarrige, 1982, "Chroniques téléphoniques et télégraphiques", Collection historique des télécommunications.KFBiographical history of technology > Baudot, Jean-Maurice-Emile
-
17 регистр команд
1. command register2. control register3. instruction register4. operation registerрегистр операции; регистр команд — operation register
5. order registerкод команды; система команд — order code
6. program registerшаг программы; команда программы — program step
7. program-address counterсчетчик команд; регистр команд — program-address counter
8. program counterсчетчик адресов; счетчик команд — location counter
-
18 Armstrong, Edwin Howard
[br]b. 18 December 1890 New York City, New York, USAd. 31 January 1954 New York City, New York, USA[br]American engineer who invented the regenerative and superheterodyne amplifiers and frequency modulation, all major contributions to radio communication and broadcasting.[br]Interested from childhood in anything mechanical, as a teenager Armstrong constructed a variety of wireless equipment in the attic of his parents' home, including spark-gap transmitters and receivers with iron-filing "coherer" detectors capable of producing weak Morse-code signals. In 1912, while still a student of engineering at Columbia University, he applied positive, i.e. regenerative, feedback to a Lee De Forest triode amplifier to just below the point of oscillation and obtained a gain of some 1,000 times, giving a receiver sensitivity very much greater than hitherto possible. Furthermore, by allowing the circuit to go into full oscillation he found he could generate stable continuous-waves, making possible the first reliable CW radio transmitter. Sadly, his claim to priority with this invention, for which he filed US patents in 1913, the year he graduated from Columbia, led to many years of litigation with De Forest, to whom the US Supreme Court finally, but unjustly, awarded the patent in 1934. The engineering world clearly did not agree with this decision, for the Institution of Radio Engineers did not revoke its previous award of a gold medal and he subsequently received the highest US scientific award, the Franklin Medal, for this discovery.During the First World War, after some time as an instructor at Columbia University, he joined the US Signal Corps laboratories in Paris, where in 1918 he invented the superheterodyne, a major contribution to radio-receiver design and for which he filed a patent in 1920. The principle of this circuit, which underlies virtually all modern radio, TV and radar reception, is that by using a local oscillator to convert, or "heterodyne", a wanted signal to a lower, fixed, "intermediate" frequency it is possible to obtain high amplification and selectivity without the need to "track" the tuning of numerous variable circuits.Returning to Columbia after the war and eventually becoming Professor of Electrical Engineering, he made a fortune from the sale of his patent rights and used part of his wealth to fund his own research into further problems in radio communication, particularly that of receiver noise. In 1933 he filed four patents covering the use of wide-band frequency modulation (FM) to achieve low-noise, high-fidelity sound broadcasting, but unable to interest RCA he eventually built a complete broadcast transmitter at his own expense in 1939 to prove the advantages of his system. Unfortunately, there followed another long battle to protect and exploit his patents, and exhausted and virtually ruined he took his own life in 1954, just as the use of FM became an established technique.[br]Principal Honours and DistinctionsInstitution of Radio Engineers Medal of Honour 1917. Franklin Medal 1937. IERE Edison Medal 1942. American Medal for Merit 1947.Bibliography1922, "Some recent developments in regenerative circuits", Proceedings of the Institute of Radio Engineers 10:244.1924, "The superheterodyne. Its origin, developments and some recent improvements", Proceedings of the Institute of Radio Engineers 12:549.1936, "A method of reducing disturbances in radio signalling by a system of frequency modulation", Proceedings of the Institute of Radio Engineers 24:689.Further ReadingL.Lessing, 1956, Man of High-Fidelity: Edwin Howard Armstrong, pbk 1969 (the only definitive biography).W.R.Maclaurin and R.J.Harman, 1949, Invention \& Innovation in the Radio Industry.J.R.Whitehead, 1950, Super-regenerative Receivers.A.N.Goldsmith, 1948, Frequency Modulation (for the background to the development of frequency modulation, in the form of a large collection of papers and an extensive bibliog raphy).KFBiographical history of technology > Armstrong, Edwin Howard
-
19 Edison, Thomas Alva
SUBJECT AREA: Architecture and building, Automotive engineering, Electricity, Electronics and information technology, Metallurgy, Photography, film and optics, Public utilities, Recording, Telecommunications[br]b. 11 February 1847 Milan, Ohio, USAd. 18 October 1931 Glenmont[br]American inventor and pioneer electrical developer.[br]He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.[br]Principal Honours and DistinctionsMember of the American Academy of Sciences. Congressional Gold Medal.Further ReadingM.Josephson, 1951, Edison, Eyre \& Spottiswode.R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.IMcN -
20 код телетайпа
- 1
- 2
См. также в других словарях:
Code division multiple access — This article is about a channel access method. For the mobile phone technology referred to as CDMA, see IS 95 and CDMA2000. Multiplex techniques Circuit mode (constant bandwidth) TDM · FDM … Wikipedia
code — coder, n. codeless, adj. /kohd/, n., v., coded, coding. n. 1. a system for communication by telegraph, heliograph, etc., in which long and short sounds, light flashes, etc., are used to symbolize the content of a message: Morse code. 2. a system… … Universalium
transmitter — Synonyms and related words: AM transmitter, FM transmitter, RT transmitter, TelAutography, Teletype, Teletype network, Teletyping, amateur transmitter, beacon, call box, closed circuit telegraphy, code, coin telephone, desk telephone, dial… … Moby Thesaurus
code — Synonyms and related words: Aesopian language, Babel, Code Napoleon, Greek, Napoleonic code, Procrustean law, TelAutography, Teletype, Teletype network, Teletyping, Ten Commandments, Zeitgeist, argot, axiology, babble, behavioral norm, body of… … Moby Thesaurus
Universal asynchronous receiver/transmitter — A universal asynchronous receiver/transmitter (usually abbreviated UART and pronEng|ˈjuːɑrt) is a type of asynchronous receiver/transmitter , a piece of computer hardware that translates data between parallel and serial forms. UARTs are commonly… … Wikipedia
LT code — In computer science, LT codes (Luby Transform codes) are the first class of practical fountain codes that are near optimal erasure correcting codes invented by Michael Luby in 1998 and published in 2002. [http://ieeexplore.ieee.org/xpl/freeabs… … Wikipedia
Spark-gap transmitter — A spark gap transmitter is a device for generating radio frequency electromagnetic waves. These devices served as the transmitters for most wireless telegraphy systems for the first three decades of radio (1887 ndash;1916) and the first… … Wikipedia
Morse code abbreviations — differ from prosigns for Morse Code in that they observe normal interletter spacing; that is, they are not run together the way prosigns are. From 1845 until well into the second half of the 20th century, commercial telegraphic code books were… … Wikipedia
RST code — For other uses of the three letter acronym, see RST. The RST code is used by amateur radio operators, shortwave listeners, and other radio hobbyists to exchange information about the quality of a radio signal being received. The code is a three… … Wikipedia
Rolling code — A rolling code (or sometimes called a hopping code) is used in keyless entry systems to prevent replay attacks (Where an eavesdropper records the transmission and replays it at a latertime to cause the receiver to unlock .)Such systems are… … Wikipedia
Morse code — Chart of the Morse code letters and numerals Morse code is a method of transmitting textual information as a series of on off tones, lights, or clicks that can … Wikipedia